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•  What	is	the	hardest	problem	in	drug	development?	GeNng	sta6s6cians	and	
pharmacometricians	to	speak	produc6vely	with	each	other	about	the	best	
method	to	inform	dose	selec6on	

•  DR	and	ER	are	complementary	methods	yet	posed	as	‘compe6ng’	methods	….	
Why?		

	
•  Cultural	gap	

–  Sta6s6cians	don’t	typically	understand	pharmacokine6c	exposure	and	related	
underlying	physiology	and	therefore	presume	these	aren’t	relevant	to	the	
ques6ons	being	asked		

–  Pharmacometricians	don’t	typically	understand	core	sta6s6cal	issues	such	as	bias	
and	opera6ng	characteris6cs	of	the	sta6s6cal	methods	they	use	and	therefore	
presume	these	aren’t	relevant	to	the	ques6ons	being	asked		

•  The	Truth	is	that	we	are	asking	different	ques6ons	
–  Goal	of	this	talk	is	to	learn	a	bit	about	both	sides	in	the	context	of	dose	selec6on	

Dose	Response	versus	Exposure	Response?		
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•  In	the	good	old	days,	dose	selec6on	was	“easy”….	But	today?	

•  EMA	review	of	135	Marke6ng	Authoriza6ons	between	2010-2014	showed:		
–  9%	(12/135)	had	Major	Objec6ons	caused	by	“not	established	or	jus6fied	dosing	

regimens”		
–  10%	(13/135)	required	post-authoriza6on	changes	in	dose	in	special	popula6ons	

(e.g.	hepa6c	or	renal	impairment,	or	due	to	DDI)		

•  FDA	review	of	302	NDAs	from	2000-2012:	
–  16%	(24/151)	first-cycle	review	failures	involved	issues	of	uncertainty/inadequacy	

of	dose	selec6on		

•  Precision	medicine	changing	how	we	should	think	about	“dose”		
–  The	more	you	understand	about	the	impact	of	individual	characteris6cs	on	

determinants	of	response,	including	drug	exposure,	the	bejer	able	you	are	to	
determine	the	pa6ent(s)	most	likely	to	benefit	

–  Precision	medicine,	per	Lisa	LaVange’s	talk	

Dose	Selec6on	Regarded	As	the	Most	
Cri6cal	Decision	in	Drug	Development	
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•  Dose:	What	a	pa6ent	is	supposed	to	get	when	
prescribed	a	drug		

•  Response:	Measure	of	pharmacological	effect	of	a	drug	

•  Sta6s6cal	analysis	typically	straighlorward:	within-
group	es6mates	and	pairwise	comparisons	between	
dose-groups	
–  Trend	tests	omen	performed		
–  Con6nuous	models	for	dose-response	(e.g.	regression	

line,	hill	equa6on	/	Emax	model)	less	commonly	fit		

•  Baseline	pa6ent	characteris6cs	are	typically	assessed,	
but	D-R	analyses	do	not	dis6nguish	where	in	the	causal	
pathways	any	differences	arise		

•  Dose-response	modeling	gives	a	straighlorward	way	to	
answer	what	happens	when	pa6ents	get	a	medica6on	
–  Power	of	the	approach	relies	on	the	simplicity,	e.g.	

facilitates	ITT	assessment		

Modeling	Dose-Response	
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•  Exposure:	measures	of	acute	or	integrated	drug	
concentra6on	(e.g.	average,	maximum	or	minimum	
concentra6on)	

•  Response:	Measure	of	pharmacological	effect	of	a	drug	

•  Modeling	typically	broken	into	two	steps:	modeling	of	dose	to	
exposure,	then	modeling	of	exposure	to	response			
–  Pa6ent	characteris6cs	can	effect	either	or	both	rela6onships	
–  Either	step	involves	individual	pa6ent	varia6on;	modeling	the	

two	rela6onships	can	drive	to	an	understanding	of	why	a	given	
dose	may	work	differently	in	different	people		

–  Allows	for	a	more	mechanis6c	approach	to	thinking	about	dose	
selec6on		

•  Sta6s6cal	analyses	omen	u6lize	non-linear	models	that	focus	
on	es6ma6ng	parameters	that	define	the	curve,	rather	than	
group-level	es6mates		

•  Requires	more	measurements	to	get	the	data	for	the	
modeling;	need	to	assess	exposure	in	pa6ents	in	the	study	

•  Also,	omen	exposure-response	modeling	will	u6lize	
biomarkers	instead	of,	or	in	addi6on	to,	the	ul6mate	clinical	
endpoint	–	possibly	with	addi6onal	models	linking	the	
biomarkers	to	the	clinical	endpoint		

Modeling	Dose-Exposure-Response	
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A-ributes	of	Dose-Response	

•  Dosage	regimen	is	“fixed”	–	assigned	
by	study	design	–	instead	of	being	a	
measurement	

•  Agnos6c	to	why	pa6ent	
characteris6cs	cause	different	
responses	–	variability	in	exposure	
becomes	part	of	the	variability	in	
response		

•  Easy	to	implement	inten6on-to-treat	
analyses,	survival	analyses	–	just	
need	dose	and	outcome		

•  Easier	to	u6lize	‘dose’	in	adap6ve	
designs	than	PK	

Dose	Response	vs	Exposure	Response	
General	Considera6ons	

6	

A-ributes	of	Exposure-Response	

•  Between-subject	variability	in	
disposi6on	means	that	dose	really	isn’t	
“fixed”	when	thinking	about	what	
drives	response	

•  Drives	one	more	level	of	understanding	
in	how	the	drug	works	–	can	
understand	complexi6es	such	as		
–  Nonlinear	rela6onship	between	dose	and	

exposure		
–  Time	lags	between	dose	administra6on	and	

acute	pharmacodynamic	effects		
–  Differen6al	impact	of	pa6ent	characteris6cs	

on	D-E	vs	E-R			

•  Greater	understanding	can	drive	
decisions	in	changing	dosing	forms	or	
regimen,	switching	popula6ons		
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1.  Complementary	ER	modeling	of	biomarker	with	
DR	assessment	of	clinical	response		

2.  ER	modeling	to	support	pediatric	development	
3.  ER/DR	modeling	to	support	formula6on	change	
4.  ER	and	DR	modeling	in	Phase	I/II	

Examples	
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Example:	JANUVIA		
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Approved	DPP-4	inhibitor	for	
treatment	of	diabetes	
	
Phase	I	biomarker	studies	used	E-R	
models	to	guide	dose	selecBon	in	
Phase	II.		UlBmate	Phase	III	dose	
selecBon	uBlized	D-R	assessment.	



 

Reasonable to assume (children vs adults) 
Similar disease progression? 
Similar response to intervention? 

Reasonable to assume similar 
exposure-response (ER) 
in pediatrics and adults? 

YES TO BOTH 

NO 

NO TO EITHER 

Adequate dose-ranging studies 
Safety/efficacy trials 

No extrapolation 

Is there a PD measurement that can be 
used to predict efficacy in children? 

NO 

Adequate dose-ranging study in children to select doses to achieve 
target PD effect 
Conduct safety trials at the identified doses(s) 

YES Partial 
Extrapolation 

Adequate PK study to select dose to 
achieve levels similar to adults 
Safety trials at the identified dose(s) 

YES Full Extrapolation 

Quantitative Framework for Extrapolation 

9 
9 

Adapted from:  http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM425885.pdf 

Example:	Pediatric	Dose	Selec6on		
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Example:	Pediatric	Dose	Selec6on		
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Case Study #1 

   Derivation of darunavir doses in HIV-
infected treatment experienced 
pediatric patients ages 6 to 17 years  

http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/DevelopmentResources/ucm129567.pdf 



Example:	Pediatric	Dose	Selec6on		
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Study Design (Part 1) 

Weight (kg) Darunavir Dose  
(Group A) 

Darunavir Dose 
(Group B) 

20-30 300 mg 375 mg 

30-40 375 mg 450 mg 

40-50 450 mg 600 mg 

•  44 pediatric patients randomized to two  
  dose arms for 2 weeks 

* Adult dose is 600 mg 



Example:	Pediatric	Dose	Selec6on		
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Study Design (Part 2) 

• Week 2 interim PK data were analyzed 
• Dose group B was chosen for Part 2 

– 22 patients in dose group A were switched to 
higher dose 

– 24 additional subjects were enrolled 

• Safety and activity (viral load) measured 
through 48 weeks 



Example:	Pediatric	Dose	Selec6on		
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Is it reasonable to assume similar exposure-
response relationship in adults and children? 
YES 

Exposure = IQ = C0h/IC50 



Example:	Pediatric	Dose	Selec6on		
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11 

Similar Exposure in Pediatric and 
Adult Patients 



Example:	ISENTRESS®	BID	vs	QD	
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be similar in terms of predictive value. Since GM Ctrough is the
parameter most similar to a traditional PK parameter and the one
that would be easiest to measure in a clinical context, further anal-
yses and discussion focus on this parameter.

The graphical description of the PK/PD relationship between GM
Ctrough and the probability of achieving an HIV RNA level of !50
copies/ml stratified by log10 baseline HIV RNA for the QD treatment
arm shows the expected trend, that a higher GM Ctrough value in-
creases the probability of achieving an HIV RNA level of !50 cop-
ies/ml (Fig. 2). This relationship is also evident when examining the
data arranged by quartiles of the GM Ctrough data and the percentage
of patients in each quartile that achieved an HIV RNA level of !50
copies/ml, where there is an observed drop-off in efficacy for patients
in the 800-mg-QD arm of the study in the lowest quartile of GM
Ctrough (Fig. 2).

As an alternative method of examining the multivariate influ-
ence of both PK and the baseline viral load on the antiviral re-
sponse, GM Ctrough is plotted against the log10 of baseline HIV
RNA, with different symbols representing the QD and BID arms
of the study, and if the patient did or did not achieve HIV RNA
levels of !50 copies/ml (Fig. 3). Results of this analysis indicate
that in both treatment arms, failure to achieve an HIV RNA level
of !50 copies/ml appears predominantly at high baseline HIV
RNA levels, with 40 of the 51 treatment failures clustered in the
top two quartiles of baseline HIV RNA (Q3 and Q4 in Fig. 3). This
trend between virologic response and baseline HIV RNA has also
been seen in prior analyses of raltegravir in both treatment-naive
(17) and treatment-experienced (20) patients. Additionally, in the
800-mg-QD arm, those who failed to achieve HIV RNA levels of
!50 copies/ml appear clustered at lower values of GM Ctrough,
while those in the 400-mg-BID arm do not show an obvious trend
in regard to GM Ctrough, consistent with previous analyses (22).
This is also evident by examination of the difference in GM Ctrough

levels in the highest quartiles of baseline HIV RNA, where GM
Ctrough levels for treatment failures are approximately 130 nM, and

GM Ctrough levels for treatment successes are approximately
200 nM.

An ROC analysis was conducted, looking at the QD arm of the
study with an efficacy endpoint of HIV RNA at !50 copies/ml
(Fig. 4). Results of this analysis indicate that none of the three
sparse PK parameters examined give a value that yields a very
sensitive or specific threshold for efficacy. Additionally, log10

TABLE 2 Sparse pharmacokinetic parameters as a predictor for antiretroviral responses

Data set and
parameter

No. of
patientsa

Value for response groupb

HIV RNA ! 50 at wk 48 HIV RNA ! 400 at wk 48 Virologic failure

No. of
patientsc Odds ratio P value

No. of
patientsc Odds ratio P value

No. of
patientsc Odds ratio P value

RAL, 400 mg BID
GM C12 300 278 0.7 (0.2, 1.8) 0.412 293 1.3 (0.2, 7.5) 0.773 21 1.5 (0.5, 4.1) 0.471
Call 373 343 1.2 (0.4, 3.9) 0.729 361 0.8 (0.1, 4.6) 0.792 31 1.3 (0.4, 4.0) 0.694
Cmin 373 343 1.2 (0.5, 2.8) 0.698 361 0.6 (0.2, 2.6) 0.537 31 0.8 (0.4, 2.0) 0.697

RAL, 800 mg QD
GM C24 237 208 2.0 (0.8, 5.5) 0.154 220 3.2 (0.8, 12.3) 0.086 34 0.5 (0.2, 1.1) 0.091
Call 365 318 1.7 (0.9, 3.3) 0.095 338 2.5 (1.1, 5.8) 0.034 53 0.6 (0.3, 1.2) 0.139
Cmin 365 318 1.7 (0.9, 3.2) 0.085 338 1.5 (0.7, 3.2) 0.321 53 0.6 (0.3, 1.1) 0.090

Pooled data
GM Ctrough 537 486 1.6 (0.9, 2.8) 0.085 513 3.5 (1.5, 8.1) 0.003 55 0.5 (0.3, 0.9) 0.012
Call 738 661 1.9 (1.2, 3.3) 0.012 699 2.8 (1.4, 5.6) 0.004 84 0.6 (0.3, 0.9) 0.023
Cmin 738 661 1.8 (1.1, 2.8) 0.021 699 1.6 (0.8, 3.0) 0.158 84 0.6 (0.3, 0.9) 0.011

a Number of patients with both pharmacokinetic and efficacy data.
b Odds ratio represents the fold change in the odds (probability of the event occurring over probability of the event not occurring) of the response for each 1-unit increase on the
log10 scale in the PK parameter. HIV RNA levels are expressed as copies/ml.
c Number of patients with event.

FIG 2 Probability of achieving HIV RNA levels of !50 copies/ml as a function
of the GM Ctrough and stratified by log baseline HIV RNA for the 800-mg-QD
treatment arm, showing the PK/PD relationship for the mean baseline viral
load (solid) and the 25% and 75% quartiles (dashed). Probability curves are
superimposed above observed data (divided by quartiles) for the GM Ctrough

and the percentage of patients observed with HIV RNA levels of !50 copies/
ml. The median GM Ctrough value, range of GM Ctrough values in the quartile,
number of subjects achieving HIV RNA levels of !50 copies/ml, and total
number of subjects in each quartile are displayed below each quartile.

Rizk et al.

3104 aac.asm.org Antimicrobial Agents and Chemotherapy

vidual concentrations in plasma as a function of the time since last
dose, stratified by meal type, were examined for both the QD and
BID arms. In the sparse PK sampling data set, there did not appear
to be an obvious trend of the influence of meal type on raltegravir
plasma concentrations (data not shown). Intensive PK profiles for
patients in QDMRK were generally consistent with previous ob-
servations of HIV-infected patients (12) and of healthy volunteers
(3), where raltegravir concentrations declined from Cmax in a bi-
exponential manner with an initial half-life of approximately 1 h
and a terminal half-life of approximately 9 h. In both the sparse
and intensive PK data sets, the GM Ctrough plasma concentrations
in both arms of the study exceeded 31 nM, the mean in vitro 95%
inhibitory concentration (IC95) of raltegravir for wild-type HIV-1
in the presence of 50% normal human serum; however, GM
Ctrough values for the 800-mg-QD arm of the study were approxi-
mately 4.5-fold and 6-fold lower than in the 400-mg-BID arm,
respectively, in the sparse and intensive data sets. Additionally, in
the 400-mg-BID arm of the intensive PK data set, Ctrough values for
all subjects exceeded 31 nM. The geometric mean of Cmin for both
arms of the study in the sparse PK data set also exceeded 31 nM;
however, a greater proportion of individuals on 800 mg QD
(42.4%) exhibited Cmin below 31 nM than individuals on 400 mg
BID (13.8%). Nanomolar values can be converted to ng/ml by
multiplying by 0.4444 (the molecular weight of raltegravir is 444.4
g/mol). For instance, the above-mentioned IC95 of 31 nM is equal
to 13.8 ng/ml.

PK/PD analyses. To explore the potential association between
sparse PK parameter values and antiretroviral responses for pa-
tients receiving raltegravir at 800 mg QD or 400 mg BID, logistic
regression models were used to analyze each of 3 data sets: (i) the
BID arm alone, (ii) the QD arm alone, and (iii) the BID and QD
arms pooled for the association between each sparse PK parameter
and each of the response parameters (HIV RNA level of !400
copies/ml at week 48, HIV RNA level of !50 copies/ml at week 48,
and virologic failure by week 48). The estimated odds ratios are
presented in Table 2. For patients in the BID arm, there was no
indication of any significant PK/PD association over the range of
tested PK values, which is consistent with prior analyses of PK/PD
data after BID administration in the treatment-naive population.

In the analysis of the QD arm, only 1 significant relationship was
identified (between Call and HIV RNA levels of !400 copies/ml);
however, consistent trends in the expected direction are observed
for each of the PK parameters and virologic endpoints. When data
from both arms of the study are pooled, many significant relation-
ships emerge, again trending in the expected direction. The in-
creased degree of significance in the observed PK/PD relationships
when both arms are included in the analysis is likely due to a
combination of both a higher number of individuals included in
the pooled analysis and a wider range of observed PK parameters
spanning both the QD and BID arms.

All of the sparse PK parameters examined in this study (GM
Ctrough, Call, and Cmin) appear to be associated with efficacy, and as
illustrated by the logistic regression results shown in Table 2 and
the ROC analysis discussed below, all three parameters appear to

FIG 1 Arithmetic mean (SE) concentration-time profiles for the subset of
patients with intensive PK sampling at week 4. For the intensive PK evaluation,
samples were collected at the following time points: predose and 0.5, 1, 1.5, 2,
3, 4, 6, 8, 12, and 24 h postdose.

TABLE 1 Summary pharmacokinetic parameters

Parameter

Value for groupd

GM ratio, QD/BID
(90% CI)

Raltegravir QD group Raltegravir BID group

No. of
patients GM (% CV‡)

No. of
patients GM (% CV‡)

Intensive pharmacokinetic profiles
AUCa ("M · h) 22 30.87 (70) 20 13.14 (99) 1.17 (0.80, 1.72)
Cmax ("M) 22 13.46 (69) 20 3.38 (135) 3.98 (2.58, 6.16)
Ctrough

b (nM) 22 40 (111) 20 257 (167) 0.15 (0.09, 0.26)

Sparse pharmacokinetic samples
Call (nM) 380 196 (176) 384 455 (92) 0.43 (0.38, 0.49)
GM Ctrough

c (nM) 245 83 (140) 304 380 (126) 0.22 (0.19, 0.25)
Cmin (nM) 380 46 (189) 384 106 (143) 0.43 (0.38, 0.50)

a AUC0-12 was determined for the BID arm, and AUC0-24 was determined for the QD arm. The ratio is for 24-h exposure: AUC0-24 QD/(2 # AUC0-12 BID).
b Ctrough $ C12 for BID and C24 for QD.
c GM Ctrough was calculated from sparse PK samples using all concentration measurements between 11 and 13 h postdose for a BID recipient or between 22 and 26 h postdose for a
QD recipient.
d GM values were back transformed from log scale. % CV ! 100 " !e"s2# # 1, where s2 is the observed variance on the natural log scale.

PK/PD of QD Versus BID Raltegravir for HIV Infection
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Situa6on:	dose	selec6on	for	QD	formula6on	of	ISENTRESS	
400	mg	BID	marketed	dose;	desire	to	switch	to	QD	dosing	

•  PK/PD	modeling	suggested	90%	POS	that	
1200	mg	QD	would	meet	clinical	non-
inferiority	

•  Non-inferiority	achieved	at	1200	mg		

•  Ini6al	effort:	800	MG	QD	had	similar	AUC,	
higher	Cmax	but	lower	Ctrough		

•  800	mg	QD	study	failed	to	show	non-inf		



•  NPY-Y5	receptor	antagonist	
considered	for	treatment	of	
obesity	

•  E-R	modeling	of	PET	imaging	study	
used	to	guide	dose	selec6on	for	
Phase	II	

•  D-R	assessment	of	Phase	II	used	to	
assess	doses	for	later	phase	
studies		
–  Exposure	measured	as	trough	
concentra6ons	

–  Low	variability	in	PK	for	any	given	
dose,	and	a	wide	dose	range	led	to	
similar	conclusions	between	D-R		
and	E-R	

Example:	MK-0557	

16	
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 Figure 9: Mean Trough Plasma Concentration vs Body Weight Loss At Week 12
Preliminary Data

Mean (95% CI) Change in Body Weight at Week 12 Shown for Subjects with PK data
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•  Hsu,	2009,	Pharmaceut.	Sta6st.	2009;	8:	
203–215,	compared	dose-response	
models	and	exposure-response	models	in	
dose	selec6on		

•  Simulated	a	classic	parallel	group	design	
with	5	dose	groups		
–  Response	simulated	as	a	func6on	of	
exposure	as	an	Emax	model		

–  Exposure	simulated	as	a	log-normal,	based	
on	subject-level	clearance	simulated,	plus	
inter-day/measurement	error	added		

–  Range	of	within-	and	between-subject	
variability	in	both	exposure	and	response		

–  Trial	analyzed	using	both	DR	and	ER	Emax	
models	and	minimum	effec6ve	dose	
es6mated	

Sta6s6cal	Considera6ons	(Hsu,	2009)	
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WGs, the adaptive dose-ranging studies (ADRS)
WG, is focused solely on the topic of improving
dose selection in drug development.

Traditionally, dose-finding in clinical develop-
ment has been done under a ‘Phase III’ strategy:
use a few (2 or 3) doses and apply hypothesis
testing to identify doses that are statistically
significantly different from placebo. The smallest
of such doses that produces a clinically meaningful
effect, often assessed using the point estimate of
the dose effect, is selected as the minimum effective
dose (MED). It then becomes the dose brought
into Phase III. We refer to this as the ANOVA
approach, borrowing the name from the statistical
model typically used with it. One of the major
drawbacks of the ANOVA approach is treating
what is essentially an estimation problem (that is,
estimating a target dose and the DR profile) as a
hypothesis testing problem, which is more sensible
in the context of confirmatory trials. The ineffi-
ciency of such an approach has been investigated
and reported in the literature [3–5].

Designs and methods for improving dose-finding
in the context of drug development form an active
area of research, with proposals having focused
primarily on the use of modeling [3], optimal
designs [6,7], adaptive designs [5], Bayesian meth-
ods [8] and combinations of these [9]. A common
thread of these contributions is the focus on the
estimated DR relationship, which is used to
produce estimates for target doses and to define
better allocation of patients to available doses.

The PhRMA ADRS WG conducted a compre-
hensive simulation study to compare several of
these improved designs and algorithms for dose
selection among themselves and the more tradi-
tional ANOVA method. Their results, conclu-
sions, and recommendations were published in a
white paper [4]. One of the key findings from the
simulations was that none of the methods con-
sidered was capable of producing accurate dose
selection under the sample size and number of
doses restrictions frequently encountered in prac-
tice. The paper included a number of suggestions
for further research on methods to improve dose
selection, one of them being the potential use of
exposure – response (ER) information.

The focus of this paper is on quantifying the
potential benefit of ER modeling for dose selection
and DR estimation. Simulations under a simple
dose – exposure – response model framework are
used to compare dose selection and DR estimation
using DR vs ER data and modeling.

The remainder of the paper is organized as
follows. The dose – exposure – response model
framework is presented in Section 2, with the
methodological approaches used for fitting the
models and for dose selection/DR estimation
being described in Section 3. A comprehen-
sive simulation study is presented in Section 4,
including its assumptions, scenarios, and results.
Conclusions and recommendations from the si-
mulation study, together with areas for further
investigation, are included in Section 5.

2. DOSE–EXPOSURE–RESPONSE
MODEL FRAMEWORK

We adopt a simple modeling framework to allow
us to explore and compare directly the relationship
between DR and ER. We assume a parallel group
design in which patients are randomly assigned to
one of k doses, d1od2o ! ! ! dk, with d1 representing
placebo. Exposure is represented here by the
steady-state area under the concentration curve
(AUCss). Let CLij denote the clearance corre-
sponding to subject j within dose group i, it follows
that steady-state AUCssij 5 di/CLij.

2.1. Exposure–response

Assuming that the median response mij for subject j
in dose group i as a function of exposure is
represented by the following sigmoid-Emax model
(Hill equation):

mij ¼ E0þ
Emax AUCsshij

EC50hþAUCsshij
ð1Þ

where E0 denotes the expected placebo response,
Emax is the maximum effect of the drug over the
placebo response, EC50 is the exposure level that
produces half of the maximum expected effect
(Emax), and h is the Hill coefficient. Figure 1

Copyright r 2009 John Wiley & Sons, Ltd. Pharmaceut. Statist. 2009; 8: 203–215
DOI: 10.1002/pst

204 C.-H. Hsu

displays four different typical shapes described by
the sigmoid-Emax model (1). All four curves have
E0 5 20 and Emax 5 100, differing by the values of
EC50 and h, which are indicated in the strip labels.
These same four models will be used in the
simulation study covered in Section 4. Note that
for the two upper models the maximum effect is
reached within the observed exposure range, while
for the other two, especially the one on the lower
left panel, the response plateau is not reached.

Conditional on the knowledge of the exposure
(or the value of CL), the response is assumed to
follow a lognormal distribution, as follows:

logðyijÞ # NðlogðmijÞ;s
2
YÞ ð2Þ

where mij is defined in (1) and sY denotes the
standard deviation of the log response, which is
approximately equal to the coefficient of variation
(CV) of the response. Probability bands with 90%
pointwise coverage for sY 5 10% are illustrated in
Figure 1.

We further assume a log-normal distribution for
clearance, representing its intrinsic inter-subject
variation in the patient population

logðCLijÞ # NðlogðTVCLÞ; s2CLÞ ð3Þ

where TVCL denotes the typical value of clearance
(the median of the CL distribution) and sCL
denotes the intrinsic inter-subject variability of CL
(the standard deviation of log CL).

In practice, however, one does not always get to
observe exposure exactly, but rather with some
measurement error. For example, CL or AUCss
may be estimated from a pharmacokinetic model or
some non-compartmental analysis. We model the
observed clearance, CL!, conditional on CL as:

logðCL$ijÞ # NðlogðCLijÞ; s2UÞ ð4Þ

where CLij denotes the true clearance and sU the
error measurement for the observed CL (i.e. the
standard deviation of log CL! given the true CL).
The ER model that can be fitted in practice is based
on the observed exposure, which falls into the
statistical problem of measurement error models
[10]. The impact of the measurement error is to
increase the level of noise in the observed ER model,
thus making it harder to assess the true ER
relationship. Depending on the level of measurement
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displays four different typical shapes described by
the sigmoid-Emax model (1). All four curves have
E0 5 20 and Emax 5 100, differing by the values of
EC50 and h, which are indicated in the strip labels.
These same four models will be used in the
simulation study covered in Section 4. Note that
for the two upper models the maximum effect is
reached within the observed exposure range, while
for the other two, especially the one on the lower
left panel, the response plateau is not reached.

Conditional on the knowledge of the exposure
(or the value of CL), the response is assumed to
follow a lognormal distribution, as follows:

logðyijÞ # NðlogðmijÞ;s
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where mij is defined in (1) and sY denotes the
standard deviation of the log response, which is
approximately equal to the coefficient of variation
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clearance, representing its intrinsic inter-subject
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(the standard deviation of log CL).

In practice, however, one does not always get to
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measurement error. For example, CL or AUCss
may be estimated from a pharmacokinetic model or
some non-compartmental analysis. We model the
observed clearance, CL!, conditional on CL as:
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where CLij denotes the true clearance and sU the
error measurement for the observed CL (i.e. the
standard deviation of log CL! given the true CL).
The ER model that can be fitted in practice is based
on the observed exposure, which falls into the
statistical problem of measurement error models
[10]. The impact of the measurement error is to
increase the level of noise in the observed ER model,
thus making it harder to assess the true ER
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error, sU, the observed ER model may not
be as informative. In Figure 2, the impact of the
exposure measurement error in the variability of
the observed response is illustrated. We consider the
upper-left model (EC505 50 and h5 4) of Figure 1,
with observed exposure used in the x-axis and
probability bands associated with the measurement
error and total variation. Clearly, for sU440% the
observed exposure becomes a poor predictor of the
response and the value of ER modeling becomes
questionable. We will characterize this quantitatively
in the simulation study of Section 4.

2.2. Dose–response

The ER model defined in (1) can be re-expressed as
a mixed-effects DR model by using the relation-
ship AUCssij 5 di/CLij

mij ¼ E0þ
Emaxdhi

ED50hij þ dhi
ð5Þ

where ED50ij 5EC50%CLij is a random effect
giving the subject-specific dose at which half of the

maximum effect is attained. Note that the values of
the other three model coefficients, E0, Emax, and h,
remain the same as in the ER model (1).

It follows from the assumed distribution of the
CLij in (3) that

logðED50ijÞ & NðlogðTVCLÞ

þ logðEC50Þ;s2CLÞ ð6Þ

The typical value of ED50 is TVED505
TVCL%EC50.

Model (5) accommodates intrinsic inter-subject
variation present in the population by allowing the
ED50 parameter to change with patient. Unlike in
Model (1), where the subject-varying term was the
(observed) exposure, the ED50ij cannot be estimated
under the current parallel group design (Figure 3).

Figure 4 illustrates the DR models correspond-
ing to the four ER models in Figure 1, with
probability bands for the observed response and
the subject-specific DR profiles. It is clear from the
figure that as the inter-subject variation in ED50
or equivalently CL increases (and, hence, the
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•  ER	bejer	when	PK	variability	is	minimized	(σ2U)	
–  Result	is	expected	since	it	matches	how	the	data	were	simulated	
–  When	interday/measurement	error	is	more	than	40%,	DR	bejer	than	ER,	

but	how	likely	is	this?		Modern	PK	assays	have	bejer	performance	
characteris6c	standards	and	sample	handling	errors	are	learned	quickly	in	
early	phase	studies		

•  DR	bejer	when	between-subject	variability	in	clearance	(σ2CL)	is	low		
–  When	σ2CL	increases,	predic6ve	power	of	dose	decreases	
–  When	variability	is	above	50%,	DR	performance	extremely	variable	

•  This	level	of	variability	associated	with	gene6c	polymorphisms	as	well	as	intrinsic	
variability	in	CYP	3A4	systemic	and	first	pass	metabolism	(omen	seen	in	oncology	
agents	REF)	

•  DR	tends	to	underes6mate	the	dose,	while	ER	tends	to	overes6mate	
the	dose	as	σ2U	increases	

•  If	the	minimum	effec6ve	dose	is	not	in	the	dose	range,	neither	method	
works	well	–	even	if	σ2U	=	0!		
–  Due	to	inability	to	properly	es6mate	Emax		

Sta6s6cal	Considera6ons	(Hsu,	2009)	
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Dose-response		
•  Adap6ve	designs		
•  Model-based	dose-response	

models		
–  Movement	away	from	pairwise	

comparisons	to	model-based	
methods	and	use	tools	like	
MCPMod		

–  Use	of	non-linear	models		
–  See	2014	EMA/EFPIA	workshop	

on	importance	of	dose	finding/
selec6on	

Trends	in	Dose	Selec6on	

19	

Exposure-Response		
•  Integra6on	with	mechanis6c	

models	and	transla6onal	
models	to	leverage	preclinical	
evidence		

•  Time-series	models	rather	
than	integrated	measures	of	
exposure		

•  Use	of	PK/PD	for	registra6on	
endpoints,	not	just	
biomarkers	pre-POC	

•  Explora6on	of	impact	of	PK/
PD	on	adap6ve	designs		

PUBLIC	



•  DR	and	ER	complement	each	other		
– When	used	together,	can	effec6vely	address	dose	
decisions		

•  But	recognize	that	each	answers	different	
ques6ons		

•  Each	performs	well,	but	the	circumstances	in	
which	they	perform	well	differ		

Closing	thoughts	
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